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Motivated by limitations and capabilities of neutral atom qubits, we examine whether measurement-free
error correction can produce practical error thresholds. We show that this can be achieved by extracting
redundant syndrome information, giving our procedure extra fault tolerance and eliminating the need for
ancilla verification. The procedure is particularly favorable when multiqubit gates are available for the
correction step. Simulations of the bit-flip, Bacon-Shor, and Steane codes indicate that coherent error
correction can produce threshold error rates that are on the order of 10−3 to 10−4—comparable with or
better than measurement-based values, and much better than previous results for other coherent error
correction schemes. This indicates that coherent error correction is worthy of serious consideration for
achieving protected logical qubits.
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An important near-term goal in quantum information
processing is the construction and operation of a high-
quality logical qubit. This goal is currently being pursued in
several physical systems [1–4]. One promising candidate
system is an array of neutral atoms held in optical or
magnetic traps [5,6]. The quantum information is stored in
atomic hyperfine clock states. This system has several
attractive features: each natural qubit is identical, clock
states exhibit long coherence times measured in seconds,
and state preparation and state measurement can be per-
formed on msec time scales using well-developed tech-
niques of optical pumping and detection of resonance
fluorescence [7,8]. Arrays of individually addressable neu-
tral atom qubits have been demonstrated in 1D [9,10], 2D
[11–14], and 3D [15]. Qubit numbers of order 100 have
been demonstrated in 2D and 3D, and in principle, these
numbers could be extended to several thousands using
available technology. Last, the available gate set is universal,
based on microwave and laser light for single qubit rotations
together with Rydberg state mediated interactions for two-
qubit, and multiqubit, entangling gates [6].
Achieving logical protection requires an error correction

procedure compatible with available operations. Standard
error correction protocols rely on performing frequent
syndrome measurements [16,17]. This turns out not to
be well suited for neutral atom implementations for two
reasons. First, the time needed for state measurements is
currently several orders of magnitude longer than for gate
operations. Second, it is difficult to measure a single atomic
qubit in an array without scattered light corrupting the state
of nearby qubits, although a number of possible solutions to
this problem are under study [18].
These challenges motivate the consideration of coherent,

or measurement-free, error correction (CEC) methods
[19–22]. Like standard measurement-based error correction
(MEC) [1–4], techniques for measurement-free error

correction are based on stabilizer codes. However, there
has been strong skepticism that CEC can produce error
thresholds close to those of MEC [23–25], though Paz-
Silva et al. did achieve a CEC threshold only about 1 order
of magnitude worse than MEC [20]. We improve this result
by nearly 2 orders of magnitude by taking advantage of the
resources available to neutral atoms, in combination with a
novel syndrome extraction technique.
CEC is particularly attractive for neutral atom and

trapped ion approaches that rely on light scattering for
entropy removal. As part of an error correction cycle,
entropy in the data qubits is transferred to fresh ancilla
qubits, and is subsequently removed by resetting the
ancillas. Although an ancilla reset requires optical pumping
and light scattering, the number of scattered photons is
typically 1–2 orders of magnitude less than would be
needed for state measurement in MEC.
CEC can additionally benefit from an additional resource

of neutral atom systems, since the computational capabil-
ities include native Toffoli and CkNOT gates. These
CkNOTS can potentially achieve fidelities as high as
90% for k ∼ 35, while for smaller k, the fidelities of the
native gates are expected to beat fidelities of the decom-
positions into one- and two-qubit gates [26,27]. Similarly,
Rydberg interactions allow for parallel CNOT gates in which
a single control qubit targets multiple qubits simultane-
ously, improving the time required for syndrome extraction.
Native Toffoli gates have also been demonstrated using
trapped ion [28] and superconducting qubits [29], and these
gates have been used for CEC with superconducting qubits
[30]. Thus, the techniques presented here could potentially
be adapted to other platforms.
A quantum error correction code is determined by the

number of physical qubits and by the stabilizing group
that fixes the logical subspace. This stabilizer group, with
elements Si, is determined by its generators. Given n
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stabilizer generators, we can consider 2n − 1 distinct non-
trivial products of the generators, forming additional stabi-
lizers. If stabilizer values could be extracted and processed
without error, only the stabilizer generators need to be
measured, and additional stabilizers would not provide
additional useful information. The procedure we propose
is to copy onto ancillas the redundant information of a
subset of these additional stabilizers. This enables one not
only to identify data errors, but also errors that occur during
syndrome extraction. The redundancy becomes useful when
combined with the Toffoli and CkNOT gates, where the
quantum gates act as logical “AND” gates to ensure that
stabilizer values agree, conditionally targeting errors only if
extracted stabilizer values match expected syndromes.
Using this method, the ancilla qubits store only classical
information—i.e., they are immune to phase errors and are
not directly entangled with each other. We discuss this
approach for three codes: three-qubit bit-flip, nine-qubit
Bacon-Shor, and seven-qubit Steane.
The three-qubit bit-flip (BF) code has logical states

j0iL ¼ j000i and j1iL ¼ j111i with the usual stabilizers

S1 ¼ Z1Z2; S2 ¼ Z2Z3:

The values of S1 and S2 correctly identify single-qubit
errors, and each syndrome value corresponds to a distinct
correction procedure. Thus, any extraction errors leading to
an incorrect value of either stabilizer leads to an incorrect
procedure, likely resulting in a logical error. However, by
considering the additional stabilizer

S3 ¼ S1S2 ¼ Z1Z3;

it is possible to correctly identify whether a single error
occurs during ancilla preparation or syndrome extraction
(collectively: extraction errors). This property follows from
the fact that a correctly extracted syndrome always pro-
duces an even number of ancillas in the logical j1i state, as
shown in Table I. Therefore, a single extraction error occurs
if an odd number of ancilla qubits occupy a logical j1i state.
The error-correction circuit is shown in Fig. 1. The circuit
makes use of C3NOT gates, to correct errors on the data
qubits only if the ancillary state corresponds to a valid
syndrome.
An advantage of using additional stabilizer information

is that the procedure does not require separate ancilla

verification. That is, single-qubit extraction errors can be
detected simply from the combinatorics of properly
extracted syndromes. In our CEC circuits, the CkNOT
gates act nontrivially on data qubits—i.e., correct errors—
only if syndromes are properly extracted. This implies that
preexisting data errors can survive a faulty CEC cycle.
However, with high probability, the surviving data error is
simply corrected during the following cycle.
The nine-qubit Bacon-Shor (BS) code is obtained by

layering the bit-flip code, with one layer designed to protect
against phase errors, resulting in a code that can correct
arbitrary single-qubit errors. The logical X and Z operators
are just X⊗9 and Z⊗9, respectively. The error correction
procedure is quite similar to the bit-flip code, still needing
just three ancillas. Because of the underlying symmetry,
this code requires only four stabilizer generators. With the
data qubits in a 3 × 3 grid, the stabilizers are
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The procedure for performing error correction then
proceeds in a manner similar to the BF code. To correct
bit-flip errors, we consider the additional stabilizer ZUZD.
The circuit then proceeds as in Fig. 1, but now taking
each jqii to correspond to a single row of three data qubits.
Each CNOT gate in the circuit can then be interpreted as
three physical CNOT gates—one for each data qubit. The
CkNOT gates can target any single physical qubit in the
row. The procedure for correcting phase errors is

TABLE I. Correctly extracted syndromes for single-qubit bit-
flip errors on the logical j000i state. The table is easily extended
to errors on the j111i state.

j000i j100i j010i j001i
Z1Z2 0 1 1 0
Z2Z3 0 0 1 1
Z1Z3 0 1 0 1

FIG. 1. The full measurement-free extraction and correction
circuit for the BF code. The first three gates are for syndrome
extraction. The combination of X gates and C3NOT gates detect
properly extracted syndromes and correct errors accordingly. If a
syndrome value is incorrectly extracted, the data qubits are not
affected. Reset operations are performed in the final step,
indicated with R operations. This circuit also demonstrates the
bit-flip correction procedure for the BS code, taking each jqii to
be a row in the BS code. Then each CNOT gate is interpreted as
three CNOT gates, one controlled by each qubit in the row. The
C3NOT gates target any single qubit in the row. A similar
procedure is required for phase errors in the BS code.
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analogous, although extraction and correction is done by
column. Additional information is provided in the
Supplemental Material [31].
The seven-qubit Steane code has six stabilizer generators

and requires seven ancillas to correct arbitrary single-qubit
errors. Three Z-type stabilizers

SZ1 ¼ Z1Z2Z3Z7; SZ2 ¼ Z1Z2Z4Z6; SZ3 ¼ Z1Z3Z4Z5;

detect bit-flip errors, while X-type stabilizers detect phase-
flip errors and are obtained from the Z-type operators
by replacing each Zi with Xi. The logical operators are
ZL ¼ Z⊗7 and XL ¼ X⊗7.
We will restrict our discussion to bit-flip errors; phase

errors follow analogously. With three Z-type generators, we
can form seven distinct stabilizers. Then, error correction
proceeds as follows: (1) extract the seven stabilizer values
onto seven ancilla qubits, and (2) use a sequence of seven
C4NOT gates to correct errors, matching each target data
qubit qi to the unique set of control ancilla qubits whose
corresponding stabilizers act on qi. The details of this
procedure are discussed in the Supplemental Material [31],
and the circuit is shown in Fig. 2.
We performed a numerical simulation of measurement-

free error correction using the circuits shown in the
previous section. We adopted an error model controlled
by two error-rate parameters: the gate rate pgate, and the
memory (or idle-gate) rate pmem. All single-qubit gate
errors are assumed to be depolarizing; i.e., if an error occurs
on qubit i, then a single-qubit Pauli is selected at random
and applied to qubit i. Two-qubit gate errors occur with the
same probability pgate as single-qubit gates, but the error is

chosen at random from the set of two-qubit Paulis. For
multiqubit gates, each control-target pair of qubits is treated
as a two-qubit gate site, subject to error model as other
two qubit errors. The effect is that CkNOT gates have an
error rate of roughly kpgate, roughly matching physical
error models [27]. This model is discussed further in the
Supplemental Material [31].
The simulated circuits required the ability to perform

single-qubit Pauli, CNOT, and CkNOT gates. The state
evolution was performed using stabilizer simulation, in a
manner similar to the techniques outlined by Aaronson
and Gottesman in [32]. However, the CkNOT gate is not in
the Clifford group, and is not typically simulable in an
efficient manner. However, in every circuit studied here, the
CkNOT gates are always controlled by the ancilla qubits,
which only store classical information and are modeled as
classical bits.
To efficiently collect data on the circuit, we used

simulation and computational techniques similar to those
in Refs. [33] and [34], with additional detail in the
Supplemental Material [31]. Using these techniques, we
can easily and accurately estimate logical error rates. In
principle, these methods could be scaled to more qubits and
additional input parameters in a straightforward manner.
The threshold was evaluated by determining pgate such

that the logical error rate plog satisfied plogðpgateÞ ¼ pgate.
To reduce plog to a function of a single parameter, we set
pmem to a fixed value, or set pmem ¼ pgate. For neutral atom
qubits, memory error rates are 1 to 2 orders of magnitude
below gate rates. In this region of parameter space, varying
pmem had little effect on the threshold gate rate, demon-
strated in Figs. 3 and 4. The threshold results are summa-
rized in Table II.
The difference between the thresholds for the Bacon-

Shor and Steane codes highlights the behavior of CkNOT
gates with unprotected ancilla qubits. In the Steane code,

FIG. 2. Error correction circuit for the Steane code for bit-flip
errors. The circuit for phase errors is similar.

FIG. 3. Logical error rate vs gate error rate for the Bacon-Shor
code, with three different choices of memory error rate. The
dotted line shows plog ¼ pgate. The difference between the curves
with memory rates of 0 and 10−5 is minimal.
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the successful correction of a data error depends on the
successful extraction of four syndrome values, while the
Bacon-Shor depends on only three syndrome values.
Furthermore, the syndrome extraction process for the
Steane code requires 56 CNOT gates, compared with 36
for the Bacon-Shor code. Thus, the CkNOT gates perform-
ing error correction are significantly more likely to fail in
the case of the Steane code. However, in all procedures
studied here, failures in extraction do not propagate new
errors onto data qubits.
Earlier work on measurement free error correction found

a threshold of pT ≈ 3.8 × 10−5 for the nine-qubit Bacon-
Shor code [20]. Thus, our work indicates a substantial
improvement over this value. Additionally, the earlier value
needs 18 additional ancilla qubits, while our protocol needs
just three. The differences can be attributed to the combi-
nation of extracting additional stabilizer values, coupled
with the efficiency of CkNOT gates for performing
classical logic.
Directly comparing our result to measurement-based

results is not straightforward—measurement-based values
depend on the chosen ancilla verification scheme and do
not use extra stabilizer information. In addition, there is
some arbitrariness in our choice of an error model for
CkNOT gates. With these caveats, in Table II, we compare

our results to the best measurement-based threshold values
from Ref. [35], which are also first-level depolarizing
thresholds. The dramatic difference in thresholds for the
case of the Bacon-Shor seems to exist only in the regime
where memory error rates are small. In this regime, errors
are dominated by gate errors, but the circuit lengths for
CEC using neutral atom resources are typically quite
small—and certainly smaller than those required for ancilla
verification. Without the efficiency of multiqubit resources,
we would expect thresholds to drop.
Somewhat surprisingly, the thresholds calculated for

CEC are comparable to, and, in the case of Bacon-Shor,
better than thresholds calculated for MEC. The threshold
error rates for the bit flip and Bacon-Shor codes are above
10−4 (10−3) with (without) memory errors. It has been
shown, theoretically, that Rydberg gates with shaped pulses
can achieve a gate error below 10−4 [37]. Furthermore,
the scaling of the CkNOT error with k is sublinear for small
k growing to quadratic for k above about 15 [26,27]. We
infer that implementation of CEC with Rydberg gates,
while challenging, is theoretically possible. The overhead
required for CEC is not greater, and possibly even less
than that in MEC, though CkNOT gates are required.
Furthermore, the technique of using redundant syndrome
extraction can potentially be useful in other architectures.
Certainly, measurement problems are not restricted to
neutral atoms. Furthermore, redundant syndrome extraction
can potentially be used in MEC to avoid ancilla verifica-
tion, which we plan to explore in future research.

The simulations were performed using the University
of Wisconsin Center for High Throughput Computing.
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STEANE CODE

Here we provide further detail on the Steane code circuit, and the additional stabilizer information in particular.
Since much of this discussion is relevant to measurement-based error correction, we will begin with that case before
proceeding to the measurement-free case. The Steane code requires 7 data qubits, and has 6 stabilizer generators,
encoding a single logical qubit. The X and Z logical operators are XL = X⊗7 and ZL = Z⊗7. The bit-flip and
phase-flip errors can be treated independently in the Steane code, so we will restrict ourselves to the discussion of
bit-flip errors.

Here, to emphasize the symmetry of the Steane code, we adopt a different labelling convention for the stabilizers.
For bit-flip errors, we will take the 3 Z-type stabilizers to be

S1 = Z1Z2Z3Z7,

S2 = Z1Z2Z4Z6,

S3 = Z1Z3Z4Z5.

Since these all commute, by taking all possible products we can form 7 stabilizer operators. All of these operators
stabilize the logical subspace. To understand the utility of considering the additional stabilizers, it is helpful to
examine which stabilizers act on which qubits, and which qubits affect which stabilizers. This is captured in Fig. 1.
From the diagram, we can point out several convenient features of the enlarged stabilizer set. In particular, note that
each stabilizer acts on exactly four qubits. Also, each qubit affects the value of exactly four stabilizer values. In fact,
swapping the rows and columns of Fig. 1 produces an identical structure.

While considering only the stabilizer generators, an error on say q7, will affect only a single stabilizer value (S1),
while an error on q1 would affect all three generators. By considering the full set we see that all qubits are on equal
footing, so that without loss of generality we can examine errors on a single data qubit, knowing that the results will
generalize to other qubits.

Thus, examining q1 in Fig. 1, it is evident that any two stabilizers overlap at exactly 2 sites. For example, S1 and
S2 both act on q1 and q2. This overlap property is a powerful feature of the enlarged stabilizer set, particularly in
the context of measurement-based error correction.

The syndrome extraction procedure encodes the value of each stabilizer onto an ancilla qubit, requiring 14 total
qubits. Here, we will label the ancillas and the stabilizers using the same symbols. If a data qubit experiences an
error, then a properly extracted syndrome will leave exactly 4 ancilla qubits in the |1〉 state. Therefore, if a single
extraction error occurs, corrupting a single ancilla, then we will either have 3 or 5 ancilla qubits in the |1〉 state.
Without loss of generality, if q1 experiences an error, and the S7 value is improperly extracted, then ancilla qubits S1,
S2, and S3 will be in the |1〉 state. However, q1 is the only qubit that would have caused all three of those stabilizers
to be incorrectly extracted, so we deduce that q1 experienced a data error.

Similarly, if 5 ancillas occupy the |1〉 state, it remains possible to uniquely identify a data qubit. Continuing with
our example data error on q1, suppose that in addition to the usual four stabilizers, we measure S4 in the |1〉 state.
Now, for qubits q2 and q3, we will measure 3 stabilizers indicating that they had an error. However, all 4 of the q1
stabilizers indicate error. Thus, we again correctly identify the data error. We emphasize again that our example
generalizes to all qubits and stabilizers. That is, no single encoding error will cause error correction to fail.

Lastly, if two ancilla qubits are corrupted during extraction, we will either measure 2, 4, or 6 ancillas in the |1〉
state. Clearly, we can identify 2 and 6 |1〉 stabilizers as a nonsensical syndrome. Since every pair of qubits overlaps at
exactly two stabilizers, there is no way to turn a properly extracted syndrome for one qubit into a properly extracted
syndrome for another qubit. Thus, we again detect a nonsensical syndrome and deduce that 2 extraction errors
occured. In this case, this syndrome is simply discarded and extracted again.

Thus, the combination of syndrome extraction and syndrome matching is automatically robust. There is no need
for ancilla verification. Furthermore, we do not need to directly entangle the ancillas with each other, and they are
immune to phase errors.



For the measurement-free case, some benefits of the additional stabilizers are lost. In particular, in the measurement-
based context, it is fairly straightforward to interpret syndromes with extraction errors. However, losing measurement
as a resource leaves two options. On one hand, a sufficiently complicated classical logic circuit (on quantum hardware)
could properly interpret a wide range of syndromes without measurement. However, we opted for an approach based
on making the circuit as simple as possible, with the cost of losing some robustness of the syndrome matching.

Our procedure only corrects data errors if a syndrome is properly extracted. In the event of a faulty extraction, data
qubits remain unaffected. This means that preexisting data errors can possibly survive a single error correction cycle,
but our circuit prevents further harm from propagating to the data. Note that this is still sufficient for fault-tolerance,
since any single-qubit error at any point in the circuit will cause logical failure.

To do this, we use C4NOT gates to correct errors on the data qubits. The syndrome is extracted onto seven
ancillary qubits as in the measurement-based case. Then, the four ancillas corresponding to each data qubit serve as
the controls in the C4NOT gates. The full circuit is shown in Fig. 2.

BACON-SHOR CODE

The procedure for the Bacon-Shor code is quite similar to the bit-flip code. To see this, recall that the bit-flip code
is comprised of logical states |000〉 and |111〉. An analogous 3-qubit phase flip code would use logical states |+ + +〉
and |− − −〉. Note that the bit-flip code, if concatenated, would require 9 data qubits. For the Bacon-Shor code, we
“concatenate” a bit-flip code with a phase-flip code. The result is a 9 qubit code that corrects arbitrary single-qubit
errors. Restricting to bit-flip errors, the Bacon-Shor stabilizer structure is identical to that of the bit-flip code. So we
can apply the same method as in the bit-flip code.

For bit-flip errors, and picturing the data qubits in a 3× 3 array, we have stabilizers

ZU =

Z Z Z
Z Z Z
I I I


and

ZD =

I I I
Z Z Z
Z Z Z

 .

Note that two X operators acting in the same row commute with these stabilizers, as well as the logical operators
ZL = Z⊗9 and XL = X⊗9. Thus, if a bit-flip error occurs in one row, we can correct it by applying an X gate to any
qubit in the same row. With this in mind, we proceed as with the bit-flip code. We define ZM = ZU ·ZD and extract
all three stabilizer values. Then, errors are corrected row by row, as opposed to qubit by qubit in the 3-qubit case.
The circuit is shown in Fig. 3.

SCALABILITY OF ADDITIONAL STABILIZERS

The codes examined in this work are small, raising immediate questions about the scalability of the additional
stabilizer technique for larger codes. Larger codes have substantially more stabilizer generators; in particular, as the
number of generators increases the total number of possible stabilizers increases exponentially. However, determining
the complete set of possible stabilizers is not required to take advantage of the redundancy provided by considering
additional stabilizers. The benefit of the additional stabilizers comes from constraining the combinatorial relationships
between stabilizers, and the allowed combinatorial comparisons grow rapidly with each new stabilizer. Therefore, we
believe that additional stabilizers could be used with reasonable overhead, although we save this study for future
work.

SIMULATION DETAILS

The error model introduces possible memory errors at every time step, and for every qubit. Thus, there are a total
of qt memory error sites, for q total qubits and t time steps. Similarly, there are a total of g gate error sites. Each



of these sites is affected by an error with a fixed probability, so a sequence with i memory errors and j gate errors
occurs with probability

P (i, j) =

(
qt

i

)(
g

j

)
pimem(1− pmem)qt−ipjgate(1− pgate)g−j . (1)

Here, we combine two previous simulation techniques. Note that the entire error correction procedure is Markovian.
Thus, we can determine transfer rates between logical states and use these transfer rates to extract information about
logical failure rates [1]. Rather than tracking all possible states, we consider our logical states as either being logically
correct, correctable, or failed. The states with correctable errors can be further split into single bit-flip, single phase-
flip, and both types of error at once. Thus, we must determine the transition probabilities between these 5 subclasses
of logical states. We assume that once a state has experienced a logical failure, it will never accidentally correct itself.

To determine the transfer rates between two logical states of type a and b, we used a combinatorial expansion,
similar to [2]. There, the expansion was used to calculate failure probabilities directly, but we use it here to find the
transition rates. That is,

Tab =
∑
i,j

αabP (i, j).

We determine the αab by sampling over the appropriate fault paths and input states. Note that P (i, j) shrinks rapidly
for small error rates, so the sum can be truncated at low order. Using the computed transfer matrix, it is possible to
examine the system dynamics over repeated error correction cycles.

For a single uncorrected qubit with error rate p, the chance that a logical failure has occurred grows as
∑T

i=0 p·(1−p)i.
By comparing logical failure rates with growth of this form, we can extract a logical error rate pL.

MULTIQUBIT GATE ERRORS

An important ingredient of our simulation is a realistic and simulable error model for multiqubit gates. In particular,
earlier work indicates that the CkNOT gates implemented using Rydberg gates will have better fidelities than the
equivalent circuits comprised of 1- and 2-qubit gates. Furthermore, overall fidelities for CkNOT gates will scale
sublinearly in k for k less than approximately 15 [3, 4]. Since the full physical description of that noise model
is unavailable, the extent to which these multiqubit gates prevent error progagation is unknown. We adopted an
error model to produce linear scaling in k; our multiqubit gate error model also preferentially targets data qubits,
pessimistically assuming that most errors will propagate to the data.

Recall that 2-qubit gates were subjected to errors randomly chosen from the set of 15 nontrivial 2-qubit Pauli
operators. For multiqubit gates, each control-target pair of qubits was treated as a 2-qubit error site. For example, a
Toffoli gate then has 30 possible errors that occur at lowest order, and 24 of those errors affect the target qubit. For
larger k, there are 15k possible gate errors, and 80% of those errors affect data qubits.

q7

q6

q5

q4

q3

q2

q1

S1 S2 S3 S4 S5 S6 S7

FIG. 1. The qubit-stabilizer structure, where a grey box indicates that the corresponding stabilizer (column) acts on the
corresponding qubit (row). For Z-type stabilizers, e.g., S1 = Z1Z2Z3Z7. Thinking of the columns as ancillas, note that a single
error on a data qubit would leave exactly four ancillas in the |1〉 state.
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FIG. 2. The bit-flip error correction procedure for the Steane code. The first seven gates are for syndrome extraction, the
C4NOT gates correct errors. The circuit for phase errors follows by analogy. Here, the labeling agrees with Fig. 1 and not the
main text.
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FIG. 3. The full bit-flip error extraction and correction circuit for the BS code. The first 9 gates are for syndrome extraction,
the C3NOT gates correct the errors. Phase errors are corrected in an analogous process, but data qubits are grouped by
columns instead of rows. Here, the rows are (123), (456), and (789).
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